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PREFACE

This Memorandum 1s part of RAND's continuing search for new
ways of utilizing the modern digital computer. The authors present
a method for numerically integrating nonlinear partial differential
integral equations, wﬁich occur in such fields as radiative transfer
and mathematical biology. The method is then specifically applied

to solving a basic equation of transpcrt in a spherical shell.



SUMMARY
In this Memorandum, the authors show how to approximate a non-
linear partial differential integral equation by a system of ordinary
differential equations. A table of necessary constants is provided,
and the results of a test calculation on an equation of radiative

transfer in a spherical shell are described.
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1. INTRODUCTION

In applying invariant imbedding to the radiative transfer proc-

esses associated with plane parallel regions, we encounter a func-

tional equation of the form

Be,v,u) + (3 + 1) = 8u,v,2) )
1 1

+A |1 +~% f s(z,v,u’) EE’ 1 +-% I s(z,v’,u) 2%7 ,
o o

where S(o,v,u) = 0 (see Refs. 1, 2, and 3). Here z 20, 0 Su, vsl.
This can be approximated by means of a finite dimensional set of

ordinary differential equations by introducing quadrature techniques.
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where X 1%g0 ey Xy aTE the N roots of the shifted Legendre polynominal,
P;(x) - PN(I-Zx). Using these approximate relations and setting
S(z,xi,xj) = Sij(x), Eq. (1) reduces to a finite dimensional system
subject to initial conditions. This technique has be quite success-

ful in practice, as evidenced by the results in the cited references.



If we turn to the study of corresponding transfer processes for

spherical and cylindrical regions, we meet a much more formidable

equation
2 2 2 2
s l-v- 89S ., 1l-u" 3§ 1,1 v +u S
az(""'“) i zZv_ oV it zv Ju + (7 +U S - \ VZuZ); (3)
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) o

In the following we shall briefly sketch an approximation technique
which enables us to reduce the numerical solution of Eq. (3) to that

of a finite system of ordinary differential equations, and shall also
describe a samp.e calculation. Morz detailed results will be presented
subsequently. The method has been applied successfully to a number

of other classes of functional equations involving partial derivatives.
Finally, we note that equations involving partial derivatives ard

(4-6)

integrals occur with great frequency in mathematical biology.

An approach of Chandrasekhar's is described in Ref. 1.



II. DERIVATIVES AS LINEAR COMBINATIONS OF FUNCTIONAL VALUES

In order to generalize the approach to Eq. (1), we replace the
partial derivatives Su and SV by linear combinations of the values
of S at the points u,v = X xj, i,j =1,2,...,N. Given a function

f(x), we want an approximate relation of the fomm

N
£'(x,) = Z oy £x) . 1 =12, N (%)
j=1

To decermine the coefficients a we ask, by analogy with the Gaussian

ij’
quadrature formula, that Eq. (4) be exact if f(x) is a polynominal

of degree N.1 or less. To obtain 8ij' we use the test functions

* *
fm(x) - PN(x)/[(x-xm) PN'(xm)]. A simple calculation then yields

*/
PN (xi)
.im " * ’ i #m (5)
(x1 x ) PN (x )
*I/
.. PN (xm) i (1-2xm)
mm

2 *, 2 2
PN (xm) (xm-xm)

*
form = 1,2,...,N. In view of the symmetry of PN(x) about x = .5, {t

is clear that a result which yields both a

15 " TON1-1, Nel1-g Ot

useful check on the calculation of these pars.eters and a reduction

in the size of the tables. A table of values of a for N = 5,7,9

i)

follows. These values were calculated by H. Kagiwada and verified

by J. Jolissant.



-0.
-0.

-0.
-0.

-0.
0.

i =1

10134081E 02 0.15403904E 02 -0.80870874E 01

11035337E 01
1 =2

.19205120E 01
.48883323E-00

i=3

. 60233632E 00

i =1
19136364E 02
73554054E 01

i =2

.30774001E 01
.27743267E 01

i=3

.738786Y1E 00
.24639939E 01

1 =4
36940283E-00
43048331 01

Table 1

THE COEFFICIENTS a

FORN = 5

i}

0.39207982E 01

-0.15167064E 01 0.48055013E 01 -9.18571160E 01

-0.28707765E 01 -0.35527137E-14 0.28707765E 01

Table 2

THE COEFFICIENTS a

.30166068E
.37037909E

.32947313E
. 1348560YE

.37433740E
.10951929E

.14803137E
.14803137E

02
01

01
01

01
Cl

01
01

FOR N = 7

1}

-0.
-0.

0
0.

-0.
-00

-0
0.

18345136E 02 0.12020668E 02
10536210E 01

.94826608E 01 -0.49141384E 01

37784329E-GO

97174703E 00 0.56413488E 01
29621352E-00

.43048331E 01 -0.99475983E-13

36940283E-00



i=1

. 30899183E 02
.16634325E 02
. 103288€69E 01

i =2

.46321847E 01
. 58950087E 01
. 33923594E-00

1i=3

.99779608E 00
.46474057E 01
. 22383800E-00

i =4

.41927865E-00
«67044574E 01
.20889316E-00

i=5

.25654308E-00
.56843419E-11
.25654308E-00

o o

-0.
-0.

.49462602E
.11463908E

«51953604E
.27969636E

.17238123E
. 3084007 5E

Table 3

COEFFICIENTS a

02
02

01
01

5554064 7E
39077266E

01
01

01
01

.97060200E 00
«56744949E

01

1} FOR N = 9

-0.31847722E
-0.71444762E

0.15529632E
0.23856884E

. 1966641 7E
-16303335E

. 5275564 3E
0.16267280E

0.22877170E
.22877170E

02
01

02
01

01
01

01
01

01
01

.23009713E
.36223711E 01

.88594615E
.11961277E

.90706996E
. 79812006E 00

. 56744949E
.97080200E

02

01
01

01

. 72470224E 00
. 160337 20E

00

01
00



III. SAMPLE CALCULATION

Presented below are the results of a particular calculation of
interest in determining the flux reflected by a spherical shell
atmosphere. We approximated Eq. (3), with g(u,v,z) = 0, by the

system of ordinary differential equations

2 N
dSiJ(z) 1 -

dz 12 8k Sy t vy Z“kj 1k

v2 + v2 S
1,1\ it Vily
+(v1+vj)sij v2 v2 z (6)
1)
N N
S,, w w
_k1+l21kkl+_l_zsk]k’
2 Vi 2 Vi

k=1 k=1

zZ 2 a 5

with initial conditions Sij(a) = 0.

We set )\ = 1, usually the severest test, and integrated over 2
from a to a + 3 with the values a = 100, 500 and 1,000. The constant
a is the inner radius of the spherical shell. For comparison with
the plane parallel case in Ref. 1, we also printed out values of
rij(z) = Sij(z)/bxi.

Some results are shown graphically in Fig. 1. Note that as
the radius of the inner surface of the shell increases, the reflection

function of the shell approaches that of the slab. This is one test
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Fig.1 — Some reflected intensity patterns for shells with aibedo
A= 1 and thickness x = 3, for various angles of incidence



of the validity of the approximation technique used. In addition,

comparison of the N=7 and N=9 cases indicates excellent agreement.



3.

4.

5.

6.

REFERENCC S

Chandrasekhar, S., Radiative Transfer, Dover Publications, Inc.,
New York, 1960.

Bellman, R., R. Kalaba and M. Prestud, Invariant Imbedding and
Radiative Transfer in Slabs of Finite Thickness, American
Elsevier Publishing Company, Inc., New York, 1963.

Bellman, R., H. Kagiwada, R. Kalaba and M. Prestrud, Invariant
Imbedding and Time-dependent Trar~port Processes, American
Elsevier Publishing Company, Inc., New York, 1964.

Bellman, R., J. Jacquez and R. Kalaba, '"Some Mathematical Aspects
of Chemotherapy-I: One-organ Models,' Bull. Math. Biophys.,
Vol. 22, 1960, pp. 181-198.

Bellman, R., J. Jacquez and R. Kalaba, ''Some Mathematical Aspects
of Chemotherapy-1I: The Distribution of a Drug in the Body,"
Bull. Math. Biophys., Vol. 22, 1960, pp. 309-322.

Bellman, R., J. Jacquez, R. Kalaba and B. Kotkin, "A Mathematical
Model of Drug Distribution in the Body: Implications for Cancer

Chemotherapy,'" Proceedings of the IJIrd International Congress

of Chemotherapy, Georg Thieme Verlag, Stuttgart, 1964.



